The sixth Painlevé equation arising from $D^{(1)} 4$ hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 3912073
(http://iopscience.iop.org/0305-4470/39/39/S04)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:50

Please note that terms and conditions apply.

The sixth Painlevé equation arising from $D_{4}^{(1)}$ hierarchy

Kenta Fuji and Takao Suzuki

Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
Received 26 January 2006
Published 13 September 2006
Online at stacks.iop.org/JPhysA/39/12073
Abstract
The sixth Painlevé equation arises from a Drinfeld-Sokolov hierarchy of type $D_{4}^{(1)}$ by similarity reduction.

PACS number: 02.30.Ik
Mathematics Subject Classification: 34M55, 17B80, 37K10

1. Introduction

The Drinfeld-Sokolov hierarchies are extensions of the KdV (or mKdV) hierarchy [DS]. It is known that their similarity reductions imply several Painlevé equations [AS, KK1, NY1]. For the sixth Painlevé equation $\left(P_{\mathrm{VI}}\right)$, the relation with the $A_{2}^{(1)}$-type hierarchy is investigated [KK2]. On the other hand, P_{VI} admits a group of symmetries which is isomorphic to the affine Weyl group of type $D_{4}^{(1)}[\mathrm{O}]$. Also it is known that P_{VI} is derived from the Lax pair associated with the algebra $\widehat{\mathfrak{s o}}(8)$ [NY3]. However, the relation between $D_{4}^{(1)}$-type hierarchies and P_{VI} has not been clarified. In this paper, we show that the sixth Painlevé equation is derived from a Drinfeld-Sokolov hierarchy of type $D_{4}^{(1)}$ by similarity reduction.

Consider a Fuchsian differential equation on $\mathbb{P}^{1}(\mathbb{C})$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+p_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+p_{2}(x) y=0 \tag{1.1}
\end{equation*}
$$

with the Riemann scheme

$$
\left\{\begin{array}{cccccc}
x=t_{0} & x=t_{1} & x=t_{3} & x=t_{4} & x=\lambda & x=\infty \\
0 & 0 & 0 & 0 & 0 & \rho \\
\theta_{0} & \theta_{1} & \theta_{3} & \theta_{4} & 2 & \rho+1
\end{array}\right\}
$$

satisfying the relation

$$
\theta_{0}+\theta_{1}+\theta_{3}+\theta_{4}+2 \rho=1
$$

We also let $\mu=\operatorname{Res}_{x=\lambda} p_{2}(x) \mathrm{d} x$. Then the monodromy preserving deformation of the equation (1.1) is described as a system of partial differential equations for λ and μ. This
system can be regarded as the symmetric representation of $P_{\mathrm{VI}}[\mathrm{Kaw}]$. We discuss a derivation of the symmetric representation in the case

$$
\begin{array}{llll}
t_{0}=-t & t_{1}=-\frac{t+1}{t-1} & t_{3}=\frac{t-1}{t+1} & t_{4}=\frac{1}{t} \\
\theta_{0}=\alpha_{0} & \theta_{1}=\alpha_{1}-1 & \theta_{3}=\alpha_{3}-1 & \theta_{4}=\alpha_{4}-1
\end{array} \quad \rho=\alpha_{2} .
$$

Note that

$$
\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}=4
$$

With the notation
$F_{0}=\lambda+t, \quad F_{1}=\lambda+\frac{t+1}{t-1}, \quad F_{2}=\mu, \quad F_{3}=\lambda-\frac{t-1}{t+1}, \quad F_{4}=\lambda-\frac{1}{t}$,
the dependence of λ and μ on t is given by

$$
\begin{align*}
& \vartheta\left(F_{j}\right)=2 F_{0} F_{1} F_{2} F_{3} F_{4}-\left(\alpha_{0}-1\right) F_{1} F_{3} F_{4} \\
& \quad-\left(\alpha_{1}-1\right) F_{0} F_{3} F_{4}-\left(\alpha_{3}-1\right) F_{0} F_{1} F_{4}-\left(\alpha_{4}-1\right) F_{0} F_{1} F_{3}+\Theta_{j} \tag{1.2}
\end{align*}
$$

for $j=0,1,3,4$ and

$$
\begin{align*}
\vartheta\left(F_{2}\right)=-F_{2}^{2} & \left(F_{0} F_{1} F_{3}+F_{0} F_{1} F_{4}+F_{0} F_{3} F_{4}+F_{1} F_{3} F_{4}\right) \\
& +F_{2}\left\{\left(\alpha_{3}+\alpha_{4}-2\right) F_{0} F_{1}+\left(\alpha_{1}+\alpha_{4}-2\right) F_{0} F_{3}+\left(\alpha_{1}+\alpha_{3}-2\right) F_{0} F_{4}\right. \\
& \left.+\left(\alpha_{0}+\alpha_{4}-2\right) F_{1} F_{3}+\left(\alpha_{0}+\alpha_{3}-2\right) F_{1} F_{4}+\left(\alpha_{0}+\alpha_{1}-2\right) F_{3} F_{4}\right\} \\
& -\alpha_{2}\left\{\left(\alpha_{0}+\alpha_{2}-1\right) F_{0}+\left(\alpha_{1}+\alpha_{2}-1\right) F_{1}+\left(\alpha_{3}+\alpha_{2}-1\right) F_{3}\right. \\
& \left.+\left(\alpha_{4}+\alpha_{2}-1\right) F_{4}\right\}, \tag{1.3}
\end{align*}
$$

where

$$
\vartheta=\Theta_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}, \quad \Theta_{i}=\prod_{j=0,1,3,4 ; j \neq i}\left(F_{i}-F_{j}\right) .
$$

Note that the system (1.2), (1.3) is equivalent to the Hamiltonian system:

$$
\begin{equation*}
\frac{\mathrm{d} \lambda}{\mathrm{~d} t}=\frac{\partial H^{\prime}}{\partial \mu}, \quad \frac{\mathrm{d} \mu}{\mathrm{~d} t}=-\frac{\partial H^{\prime}}{\partial \lambda} \tag{1.4}
\end{equation*}
$$

where the Hamiltonian $H^{\prime}=H^{\prime}(\lambda, \mu, t)$ is given by

$$
\begin{aligned}
\Theta_{0} H^{\prime}=F_{0} F_{1} & F_{2}^{2} F_{3} F_{4}-\left(\alpha_{0}-1\right) F_{1} F_{2} F_{3} F_{4}-\left(\alpha_{1}-1\right) F_{0} F_{2} F_{3} F_{4} \\
& -\left(\alpha_{3}-1\right) F_{0} F_{1} F_{2} F_{4}-\left(\alpha_{4}-1\right) F_{0} F_{1} F_{2} F_{3}+\alpha_{2} F_{0}\left\{\left(\alpha_{0}-1\right) F_{0}\right. \\
& \left.+\left(\alpha_{1}+\alpha_{2}-1\right) F_{1}+\left(\alpha_{3}+\alpha_{2}-1\right) F_{3}+\left(\alpha_{4}+\alpha_{2}-1\right) F_{4}\right\}
\end{aligned}
$$

We also remark that the system (1.4) is transformed into the Hamiltonian system for P_{VI} as in [IKSY]

$$
\frac{\mathrm{d} q}{\mathrm{~d} s}=\frac{\partial H}{\partial p}, \quad \frac{\mathrm{~d} p}{\mathrm{~d} s}=-\frac{\partial H}{\partial q},
$$

with the Hamiltonian

$$
\begin{aligned}
s(s-1) H= & q(q-1)(q-s) p^{2}-\frac{1}{4}\left\{\left(\alpha_{1}-4\right) q(q-1)\right. \\
& \left.+\alpha_{3} q(q-s)+\alpha_{4}(q-1)(q-s)\right\} p+\frac{1}{16} \alpha_{2}\left(\alpha_{0}+\alpha_{2}\right) q
\end{aligned}
$$

by the canonical transformation $\left(\lambda, \mu, t, H^{\prime}\right) \rightarrow(q, p, s, H)$ defined as

$$
q=\frac{\left(t+\frac{t-1}{t+1}\right) F_{4}}{\left(\frac{t-1}{t+1}-\frac{1}{t}\right) F_{0}}, \quad p=\frac{\left(\frac{t-1}{t+1}-\frac{1}{t}\right) F_{0}\left(F_{0} F_{2}+\alpha_{2}\right)}{4\left(t+\frac{t-1}{t+1}\right)\left(t+\frac{1}{t}\right)},
$$

and

$$
s=-\frac{\left(t+\frac{t-1}{t+1}\right)\left(\frac{t+1}{t-1}+\frac{1}{t}\right)}{\left(t-\frac{t+1}{t-1}\right)\left(\frac{t-1}{t+1}-\frac{1}{t}\right)} .
$$

This paper is organized as follows. In section 2, we recall the definition of the affine Lie algebra $\mathfrak{g}=\mathfrak{g}\left(D_{4}^{(1)}\right)$. In section 3, a Drinfeld-Sokolov hierarchy of type $D_{4}^{(1)}$ is formulated. In sections 4 and 5 , we show that its similarity reduction implies the symmetric representation of P_{VI}.

2. Affine Lie algebra

In the notation of [Kac], the affine Lie algebra $\mathfrak{g}=\mathfrak{g}\left(D_{4}^{(1)}\right)$ is the Lie algebra generated by the Chevalley generators $e_{i}, f_{i}, \alpha_{i}^{\vee}(i=0, \ldots, 4)$ and the scaling element d with the fundamental relations
$\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0, \quad\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0 \quad(i \neq j)$,
$\left[\alpha_{i}^{\vee}, \alpha_{j}^{\vee}\right]=0, \quad\left[\alpha_{i}^{\vee}, e_{j}\right]=a_{i j} e_{j}, \quad\left[\alpha_{i}^{\vee}, f_{j}\right]=-a_{i j} f_{j}, \quad\left[e_{i}, f_{j}\right]=\delta_{i, j} \alpha_{i}^{\vee}$,
$\left[d, \alpha_{i}^{\vee}\right]=0, \quad\left[d, e_{i}\right]=\delta_{i, 0} e_{0}, \quad\left[d, f_{i}\right]=-\delta_{i, 0} f_{0}$,
for $i, j=0, \ldots, 4$, where $A=\left(a_{i j}\right)_{i, j=0}^{4}$ is the generalized Cartan matrix of type $D_{4}^{(1)}$ defined by

$$
A=\left\{\begin{array}{ccccc}
2 & 0 & -1 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 \\
-1 & -1 & 2 & -1 & -1 \\
0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 2
\end{array}\right\}
$$

We denote the Cartan subalgebra of \mathfrak{g} by

$$
\mathfrak{h}=\bigoplus_{j=0}^{4} \mathbb{C} \alpha_{j}^{\vee} \oplus \mathbb{C} d
$$

The canonical central element of \mathfrak{g} is given by

$$
K=\alpha_{0}^{\vee}+\alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}+\alpha_{3}^{\vee}+\alpha_{4}^{\vee}
$$

The normalized invariant form $(\mid): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ is determined by the conditions

$$
\begin{array}{lll}
\left(\alpha_{i}^{\vee} \mid \alpha_{j}^{\vee}\right)=a_{i j}, & \left(e_{i} \mid f_{j}\right)=\delta_{i, j}, & \left(\alpha_{i}^{\vee} \mid e_{j}\right)=\left(\alpha_{i}^{\vee} \mid f_{j}\right)=0, \\
(d \mid d)=0, & \left(d \mid \alpha_{j}^{\vee}\right)=\delta_{0, j}, & \left(d \mid e_{j}\right)=\left(d \mid f_{j}\right)=0,
\end{array}
$$

for $i, j=0, \ldots, 4$.
We consider the \mathbb{Z}-gradation $\mathfrak{g}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{k}(s)$ of type $s=(1,1,0,1,1)$ by setting $\operatorname{deg} \mathfrak{h}=\operatorname{deg} e_{2}=\operatorname{deg} f_{2}=0, \quad \operatorname{deg} e_{i}=1, \quad \operatorname{deg} f_{i}=-1 \quad(i=0,1,3,4)$.
If we take an element $d_{s} \in \mathfrak{h}$ such that

$$
\left(d_{s} \mid \alpha_{2}^{\vee}\right)=0, \quad\left(d_{s} \mid \alpha_{j}^{\vee}\right)=1 \quad(j=0,1,3,4)
$$

this gradation is defined by

$$
\mathfrak{g}_{k}(s)=\left\{x \in \mathfrak{g} \mid\left[d_{s}, x\right]=k x\right\} \quad(k \in \mathbb{Z}) .
$$

In the following, we choose

$$
d_{s}=4 d+2 \alpha_{1}^{\vee}+3 \alpha_{2}^{\vee}+2 \alpha_{3}^{\vee}+2 \alpha_{4}^{\vee}
$$

We set

$$
\mathfrak{g}_{<0}=\bigoplus_{k<0} \mathfrak{g}_{k}(s), \quad \mathfrak{g}_{\geqslant 0}=\bigoplus_{k \geqslant 0} \mathfrak{g}_{k}(s) .
$$

We choose the graded Heisenberg subalgebra $\mathfrak{s}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{s}_{k}(s)$ of \mathfrak{g} of type $s=$ ($1,1,0,1,1$) with

$$
\mathfrak{s}_{1}(s)=\mathbb{C} \Lambda_{1,1} \oplus \mathbb{C} \Lambda_{1,2}
$$

where
$\Lambda_{1,1}=-e_{0}+e_{1}+e_{3}-e_{21}+e_{23}+e_{24}, \quad \Lambda_{1,2}=e_{1}-e_{3}+e_{4}+e_{20}+e_{21}+e_{23}$.
Here we denote

$$
e_{2 j}=\left[e_{2}, e_{j}\right], \quad f_{2 j}=\left[f_{2}, f_{j}\right] \quad(j=0,1,3,4)
$$

We remark that

$$
\mathfrak{s}=\left\{x \in \mathfrak{g} \mid\left[\Lambda_{1,1}, x\right] \in \mathbb{C} K\right\} .
$$

and

$$
\mathfrak{s}_{0}(s)=\mathbb{C} K, \quad \mathfrak{s}_{2 k}(s)=0 \quad(k \neq 0)
$$

Each $\mathfrak{s}_{2 k-1}(s)$ is expressed in the form

$$
\mathfrak{s}_{2 k-1}(s)=\mathbb{C} \Lambda_{2 k-1,1} \oplus \mathbb{C} \Lambda_{2 k-1,2}
$$

with certain elements $\Lambda_{2 k-1, i}(i=1,2)$ satisfying

$$
\left[\Lambda_{2 k-1, i}, \Lambda_{2 l-1, j}\right]=(2 k-1) \delta_{i, j} \delta_{k+l, 1} K \quad(i, j=1,2 ; k, l \in \mathbb{Z})
$$

For $k=0$, we have

$$
\begin{aligned}
& \Lambda_{-1,1}=\frac{1}{2}\left(-2 f_{0}+f_{1}+f_{3}+f_{21}-f_{23}-2 f_{24}\right), \\
& \Lambda_{-1,2}=\frac{1}{2}\left(f_{1}-f_{3}+2 f_{4}-2 f_{20}-f_{21}-f_{23}\right)
\end{aligned}
$$

Remark 2.1. In the notation of [C], the Heisenberg subalgebra \mathfrak{s} corresponds to the conjugacy class $D_{4}\left(a_{1}\right)$ of the Weyl group $W\left(D_{4}\right)$; see [DF].

3. Drinfeld-Sokolov hierarchy

In the following, we use the notation of infinite-dimensional groups

$$
G_{<0}=\exp \left(\widehat{\mathfrak{g}}_{<0}\right), \quad G_{\geqslant 0}=\exp \left(\widehat{\mathfrak{g}}_{\geqslant 0}\right),
$$

where $\widehat{\mathfrak{g}}_{<0}$ and $\widehat{\mathfrak{g}}_{\geqslant 0}$ are completions of $\mathfrak{g}_{<0}$ and $\mathfrak{g}_{\geqslant 0}$, respectively.
Introducing the time variables $t_{k, i}(i=1,2 ; k=1,3,5, \ldots)$, we consider the Sato equation for a $G_{<0}$-valued function $W=W\left(t_{1,1}, t_{1,2}, \ldots\right)$

$$
\begin{equation*}
\partial_{k, i}(W)=B_{k, i} W-W \Lambda_{k, i} \quad(i=1,2 ; k=1,3,5, \ldots), \tag{3.1}
\end{equation*}
$$

where $\partial_{k, i}=\partial / \partial t_{k, i}$ and $B_{k, i}$ stands for the $\mathfrak{g}_{\geqslant 0}$-component of $W \Lambda_{k, i} W^{-1} \in \widehat{\mathfrak{g}}_{<0} \oplus \mathfrak{g}_{\geqslant 0}$. We understand the Sato equation (3.1) as a conventional form of the differential equation

$$
\begin{equation*}
\partial_{k, i}-B_{k, i}=W\left(\partial_{k, i}-\Lambda_{k, i}\right) W^{-1} \quad(i=1,2 ; k=1,3,5, \ldots), \tag{3.2}
\end{equation*}
$$

defined through the adjoint action of $G_{<0}$ on $\widehat{\mathfrak{g}}_{<0} \oplus \mathfrak{g}_{\geqslant 0}$. The Zakharov-Shabat equation,

$$
\begin{equation*}
\left[\partial_{k, i}-B_{k, i}, \partial_{l, j}-B_{l, j}\right]=0 \quad(i, j=1,2 ; k, l=1,3,5, \ldots), \tag{3.3}
\end{equation*}
$$

follows from the Sato equation (3.2).

The $\mathfrak{g}_{\geqslant 0}$-valued functions $B_{1, i}(i=1,2)$ are expressed in the form

$$
\begin{equation*}
B_{1, i}=\Lambda_{1, i}+U_{i}, \quad U_{i}=\sum_{j=0}^{4} u_{j, i} \alpha_{j}^{\vee}+x_{i} e_{2}+y_{i} f_{2} \tag{3.4}
\end{equation*}
$$

The Zakharov-Shabat equation (3.3) for $k=1$ is equivalent to

$$
\begin{equation*}
\partial_{1, i}\left(U_{j}\right)-\partial_{1, j}\left(U_{i}\right)+\left[U_{j}, U_{i}\right]=0, \quad\left[\Lambda_{1, i}, U_{j}\right]-\left[\Lambda_{1, j}, U_{i}\right]=0 \tag{3.5}
\end{equation*}
$$

for $i, j=1,2$. Then we have
Lemma 3.1. Under the Sato equation (3.2), the following equations are satisfied:

$$
\begin{equation*}
\left(d_{s} \mid \partial_{1, i}\left(U_{j}\right)\right)+\frac{1}{2}\left(U_{i} \mid U_{j}\right)=0 \quad(i, j=1,2) \tag{3.6}
\end{equation*}
$$

Proof. The system (3.2) for $k=1$ is equivalent to

$$
\begin{equation*}
\partial_{1, i}-\Lambda_{1, i}-U_{i}=W\left(\partial_{1, i}-\Lambda_{1, i}\right) W^{-1} \quad(i=1,2) \tag{3.7}
\end{equation*}
$$

Set

$$
W=\exp (w), \quad w=\sum_{k=1}^{\infty} w_{-k}, \quad w_{-k} \in \mathfrak{g}_{-k}(s)
$$

Then the system (3.7) implies

$$
\begin{equation*}
U_{i}=\sum_{k=1}^{\infty} \frac{1}{k!} \operatorname{ad}(w)^{k-1} \partial_{1, i}(w)+\sum_{k=1}^{\infty} \frac{1}{k!} \operatorname{ad}(w)^{k}\left(\Lambda_{1, i}\right) \quad(i=1,2) \tag{3.8}
\end{equation*}
$$

Comparing the component of degree $-k$ in (3.8), we obtain

$$
U_{i}=\operatorname{ad}\left(w_{-1}\right)\left(\Lambda_{1, i}\right) \quad(i=1,2),
$$

for $k=0$;

$$
\begin{equation*}
\operatorname{ad}\left(w_{-2}\right)\left(\Lambda_{1, i}\right)+\frac{1}{2} \operatorname{ad}\left(w_{-1}\right)^{2}\left(\Lambda_{1, i}\right)+\partial_{1, i}\left(w_{-1}\right)=0 \quad(i=1,2), \tag{3.9}
\end{equation*}
$$

for $k=1$;
$\sum_{i_{1}+\cdots+i_{l}=k+1} \frac{1}{l!} \operatorname{ad}\left(w_{-i_{1}}\right) \cdots \operatorname{ad}\left(w_{-i_{l}}\right)\left(\Lambda_{1, i}\right)$

$$
+\sum_{i_{1}+\cdots+i_{l}=k} \frac{1}{l!} \operatorname{ad}\left(w_{-i_{1}}\right) \cdots \operatorname{ad}\left(w_{-i_{l-1}}\right) \partial_{1, i}\left(w_{-i_{l}}\right)=0 \quad(i=1,2),
$$

for $k \geqslant 2$. On the other hand, we have

$$
\left(\Lambda_{1, i} \mid \operatorname{ad}\left(\Lambda_{1, j}\right)(x)\right)=0 \quad\left(i, j=1,2 ; x \in \mathfrak{g}_{-2}(s)\right),
$$

and

$$
\left(\Lambda_{1, i} \mid x\right)=\left(d_{s} \mid \operatorname{ad}\left(\Lambda_{1, i}\right)(x)\right) \quad\left(i=1,2 ; x \in \mathfrak{g}_{-1}(s)\right)
$$

Hence it follows that
$\left(\Lambda_{1, j} \mid \operatorname{LHS}\right.$ of (3.9)) $=\frac{1}{2}\left(\Lambda_{1, j} \mid \operatorname{ad}\left(\mathrm{w}_{-1}\right)^{2}\left(\Lambda_{1, \mathrm{i}}\right)\right)+\left(\Lambda_{1, \mathrm{j}} \mid \partial_{1, \mathrm{i}}\left(\mathrm{w}_{-1}\right)\right)$

$$
=-\frac{1}{2}\left(U_{i} \mid U_{j}\right)-\left(d_{s} \mid \partial_{1, i}\left(U_{j}\right)\right) .
$$

Remark 3.2. Let $X(0) \in G_{<0} G_{\geqslant 0}$ and define

$$
X=X\left(t_{1,1}, t_{1,2}, \ldots\right)=\exp (\xi) X(0), \quad \xi=\sum_{i=1,2} \sum_{k=1,3, \ldots} t_{k, i} \Lambda_{k, i} .
$$

Then a solution $W \in G_{<0}$ of the system (3.1) is given formally via the decomposition

$$
X=W^{-1} Z, \quad Z \in G_{\geqslant 0}
$$

4. Similarity reduction

Under the Sato equation (3.2), we consider the operator

$$
\mathcal{M}=W \exp (\xi) d_{s} \exp (-\xi) W^{-1}, \quad \xi=\sum_{i=1,2} \sum_{k=1,3, \ldots} t_{k, i} \Lambda_{k, i}
$$

Then the operator \mathcal{M} satisfies

$$
\partial_{k, i}(\mathcal{M})=\left[B_{k, i}, \mathcal{M}\right] \quad(i=1,2 ; k=1,3,5, \ldots)
$$

Note that

$$
\mathcal{M}=d_{s}-\sum_{i=1,2} \sum_{k=1,3, \ldots} k t_{k, i} W \Lambda_{k, i} W^{-1}-d_{s}(W) W^{-1}
$$

Assuming that $t_{k, 1}=t_{k, 2}=0$ for $k \geqslant 3$, we require that the similarity condition $\mathcal{M} \in \mathfrak{g}_{\geqslant 0}$ is satisfied. Then we have

$$
\partial_{1, i}(\mathcal{M})=\left[B_{1, i}, \mathcal{M}\right] \quad(i=1,2) .
$$

where $\mathcal{M}=d_{s}-t_{1,1} B_{1,1}-t_{1,2} B_{1,2}$, or equivalently

$$
\begin{equation*}
\left[d_{s}-M, \partial_{1, i}-B_{1, i}\right]=0 \quad(i=1,2) \tag{4.1}
\end{equation*}
$$

where $M=t_{1,1} B_{1,1}+t_{1,2} B_{1,2}$. Under the Zakharov-Shabat equation

$$
\left[\partial_{1,1}-B_{1,1}, \partial_{1,2}-B_{1,2}\right]=0
$$

the system (4.1) is equivalent to

$$
\sum_{j=1,2} t_{1, j} \partial_{1, j}\left(B_{1, i}\right)=\left[d_{s}, B_{1, i}\right]-B_{1, i} \quad(i=1,2)
$$

In terms of the operators U_{i}, this similarity condition can be expressed as

$$
\begin{equation*}
\sum_{j=1,2} t_{1, j} \partial_{1, j}\left(U_{i}\right)+U_{i}=0 \quad(i=1,2) \tag{4.2}
\end{equation*}
$$

We regard the systems (3.5), (3.6) and (4.2) as a similarity reduction of the Drinfeld-Sokolov hierarchy of type $D_{4}^{(1)}$.

In the notation (3.4), these systems are expressed in terms of the variables $u_{j, i}, x_{i}, y_{i}$ as follows:
$\partial_{1,1}\left(x_{2}\right)-\partial_{1,2}\left(x_{1}\right)-\left(u_{1,1}-u_{3,1}-u_{0,2}+u_{4,2}\right) x_{1}+\left(u_{0,1}-u_{4,1}+u_{1,2}-u_{3,2}\right) x_{2}=0$,
$\partial_{1,1}\left(y_{2}\right)-\partial_{1,2}\left(y_{1}\right)+\left(u_{1,1}-u_{3,1}-u_{0,2}+u_{4,2}\right) y_{1}-\left(u_{0,1}-u_{4,1}+u_{1,2}-u_{3,2}\right) y_{2}=0$,
$\partial_{1,1}\left(u_{2,2}\right)-\partial_{1,2}\left(u_{2,1}\right)-x_{1} y_{2}+x_{2} y_{1}=0$,
$\partial_{1,1}\left(u_{j, 2}\right)-\partial_{1,2}\left(u_{j, 1}\right)=0 \quad(j=0,1,3,4)$,
and

$$
\begin{align*}
& u_{1,1}-2 u_{2,1}+u_{3,1}+2 u_{4,1}-u_{1,2}+u_{3,2}=0 \\
& u_{1,1}-u_{3,1}-2 u_{0,2}-u_{1,2}+2 u_{2,2}-u_{3,2}=0 \\
& u_{1,1}-u_{3,1}+u_{1,2}+u_{3,2}-2 u_{4,2}+2 x_{1}=0 \tag{4.3}\\
& 2 u_{0,1}-u_{1,1}-u_{3,1}-u_{1,2}+u_{3,2}+2 x_{2}=0 \\
& u_{1,1}-u_{3,1}+2 u_{0,2}-u_{1,2}-u_{3,2}+2 y_{1}=0 \\
& u_{1,1}+u_{3,1}-2 u_{4,1}-u_{1,2}+u_{3,2}+2 y_{2}=0
\end{align*}
$$

for the system (3.5);

$$
\sum_{l=0,1,3,4} 4 \partial_{1, i}\left(u_{l, j}\right)+\sum_{l=0,1,3,4}\left(2 u_{l, i}-u_{2, i}\right)\left(2 u_{l, j}-u_{2, j}\right)+2\left(x_{i} y_{j}+y_{i} x_{j}\right)=0 \quad(i, j=1,2),
$$

for the system (3.6);

$$
\begin{array}{lc}
t_{1,1} \partial_{1,1}\left(x_{i}\right)+t_{1,2} \partial_{1,2}\left(x_{i}\right)+x_{i}=0, & t_{1,1} \partial_{1,1}\left(y_{i}\right)+t_{1,2} \partial_{1,2}\left(y_{i}\right)+y_{i}=0 \\
t_{1,1} \partial_{1,1}\left(u_{j, i}\right)+t_{1,2} \partial_{1,2}\left(u_{j, i}\right)+u_{j, i}=0, & (i=1,2 ; j=0, \ldots, 4)
\end{array}
$$

for the system (4.2). In the next section, we show that they imply the sixth Painlevé equation.
Under the similarity condition (4.2), the system (3.6) implies

$$
2\left(d_{s} \mid U_{i}\right)-t_{1,1}\left(U_{i} \mid U_{1}\right)-t_{1,2}\left(U_{i} \mid U_{2}\right)=0 \quad(i=1,2) .
$$

It is expressed in terms of the variables $u_{j, i}, x_{i}, y_{i}$ as follows:

$$
\begin{align*}
\sum_{l=0,1,3,4} 4 u_{l, i} & -\sum_{l=0,1,3,4} t_{1,1}\left(2 u_{l, i}-u_{2, i}\right)\left(2 u_{l, 1}-u_{2,1}\right)-2 t_{1,1}\left(x_{i} y_{1}+y_{i} x_{1}\right) \\
& -\sum_{l=0,1,3,4} t_{1,2}\left(2 u_{l, i}-u_{2, i}\right)\left(2 u_{l, 2}-u_{2,2}\right)-2 t_{1,2}\left(x_{i} y_{2}+y_{i} x_{2}\right)=0 \quad(i=1,2) \tag{4.4}
\end{align*}
$$

Remark 4.1. The systems (3.5) and (4.2) can be regarded as the compatibility condition of the Lax form

$$
\begin{equation*}
d_{s}(\Psi)=M \Psi, \quad \partial_{1, i}(\Psi)=B_{1, i} \Psi \quad(i=1,2), \tag{4.5}
\end{equation*}
$$

where $\Psi=W \exp (\xi)$.

5. The sixth Painlevé equation

In the previous section, we have derived the system of the equations

$$
\begin{align*}
& \partial_{1, i}\left(U_{j}\right)-\partial_{1, j}\left(U_{i}\right)+\left[U_{j}, U_{i}\right]=0, \quad\left[\Lambda_{1, i}, U_{j}\right]-\left[\Lambda_{1, j}, U_{i}\right]=0 \\
& \left(d_{s} \mid \partial_{1, i}\left(U_{j}\right)\right)-\frac{1}{2}\left(U_{i} \mid U_{j}\right)=0, \quad \sum_{l=1,2} t_{1, l} \partial_{1, l}\left(U_{i}\right)+U_{i}=0 \quad(i, j=1,2), \tag{5.1}
\end{align*}
$$

for the \mathfrak{g}_{0}-valued functions $U_{i}=U_{i}\left(t_{1,1}, t_{1,2}\right)(i=1,2)$, as a similarity reduction of the $D_{4}^{(1)}$ hierarchy of type $s=(1,1,0,1,1)$. In terms of the operators $B_{1, i}=\Lambda_{1, i}+U_{i}$ and $M=t_{1,1} B_{1,1}+t_{1,2} B_{1,2}$, the system (5.1) is expressed as

$$
\left[\partial_{1,1}-B_{1,1}, \partial_{1,2}-B_{1,2}\right]=0, \quad\left[d_{s}-M, \partial_{1, i}-B_{1, i}\right]=0 \quad(i=1,2)
$$

with the equations for normalization (3.6). In this section, we show that the sixth Painlevé equation is derived from them.

The operator M is expressed in the form

$$
M=\sum_{i=1,2} t_{1, i} \Lambda_{1, i}+\sum_{j=0,1,3,4} \kappa_{j} \alpha_{j}^{\vee}+\eta \alpha_{2}^{\vee}+\varphi e_{2}+\psi f_{2},
$$

so that

$$
\begin{array}{lll}
\kappa_{j}=t_{1,1} u_{j, 1}+t_{1,2} u_{j, 2} & (j=0,1,3,4), & \eta=t_{1,1} u_{2,1}+t_{1,2} u_{2,2}, \\
\varphi=t_{1,1} x_{1}+t_{1,2} x_{2}, & \psi=t_{1,1} y_{1}+t_{1,2} y_{2} . & \tag{5.2}
\end{array}
$$

The system (4.1) implies that the variables $\kappa_{j}(j=0,1,3,4)$ are independent of $t_{1, i}(i=1,2)$. Then the following lemma is obtained from (4.3), (4.4) and (5.2).
Lemma 5.1. The variables $u_{j, i}, x_{i}, y_{i}(i=1,2 ; j=0, \ldots, 4)$ are determined uniquely as polynomials in η, φ and ψ with coefficients in $\mathbb{C}\left(t_{1, i}\right)\left[\kappa_{j}\right]$. Furthermore, the following relation is satisfied:

$$
\eta^{2}-\left(\kappa_{0}+\kappa_{1}+\kappa_{3}+\kappa_{4}\right)(\eta+1)+\kappa_{0}^{2}+\kappa_{1}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}+\varphi \psi=0
$$

Thanks to this lemma, the system (5.1) can be rewritten into a system of first-order differential equations for η and φ; we do not give the explicit formulae here.

We denote by \mathfrak{n}_{+}the subalgebra of \mathfrak{g} generated by $e_{j}(j=0, \ldots, 4)$, and by \mathfrak{b}_{+}the borel subalgebra of \mathfrak{g} defined by $\mathfrak{b}_{+}=\mathfrak{h} \oplus \mathfrak{n}_{+}$. We look for a dependent variable λ such that
$\tilde{M}=\exp \left(-\lambda f_{2}\right) M \exp \left(\lambda f_{2}\right)-\exp \left(-\lambda f_{2}\right) d_{s}\left(\exp \left(\lambda f_{2}\right)\right) \in \mathfrak{b}_{+}$,
$\widetilde{B}_{1, i}=\exp \left(-\lambda f_{2}\right) B_{1, i} \exp \left(\lambda f_{2}\right)-\exp \left(-\lambda f_{2}\right) \partial_{1, i}\left(\exp \left(\lambda f_{2}\right)\right) \in \mathfrak{b}_{+} \quad(i=1,2)$,
namely
$\varphi \lambda^{2}+\left(2 \eta-\kappa_{0}-\kappa_{1}-\kappa_{3}-\kappa_{4}\right) \lambda-\psi=0$,
$\partial_{1, i}(\lambda)+x_{i} \lambda^{2}-\left(u_{0, i}+u_{1, i}-2 u_{2, i}+u_{3, i}+u_{4, i}\right) \lambda-y_{i}=0 \quad(i=1,2)$.
Note that the definition of \widetilde{M} and $\widetilde{B}_{1, i}$ arises from the gauge transformation $\Psi \rightarrow \Phi$ defined by $\Phi=\exp \left(-\lambda f_{2}\right) \Psi$ on the Lax form (4.5). By Lemma 5.1 together with the system (5.1), we can show that

$$
\lambda=-\frac{1}{8 \varphi}\left(8 \eta-\alpha_{0}^{2}-\alpha_{1}^{2}-\alpha_{3}^{2}-\alpha_{4}^{2}+4\right),
$$

satisfies equation (5.3), where $\alpha_{j}(j=0,1,3,4)$ are constants defined by

$$
\kappa_{j}=-\frac{1}{16}\left(8 \alpha_{j}-\alpha_{0}^{2}-\alpha_{1}^{2}-\alpha_{3}^{2}-\alpha_{4}^{2}-4\right) .
$$

We also let μ by a dependent variable defined by $\mu=\varphi$ so that

$$
\eta=-\lambda \mu+\frac{1}{8}\left(\alpha_{0}^{2}+\alpha_{1}^{2}+\alpha_{3}^{2}+\alpha_{4}^{2}-4\right), \quad \varphi=\mu .
$$

Then the system (5.1) can be regarded as a system of differential equations for variables λ and μ with parameters $\alpha_{j}(j=0,1,3,4)$.

We now regard the system (5.1) as a system of ordinary differential equations with respect to the independent variable $t=t_{1,1}$ by setting $t_{1,2}=1$. Then the operator \widetilde{M} is written in the form

$$
\begin{gathered}
\tilde{M}=\frac{1}{16}\left(\alpha_{0}^{2}+\alpha_{1}^{2}+\alpha_{3}^{2}+\alpha_{4}^{2}-4\right) K-\sum_{j=0,1,3,4} \frac{1}{2}\left(\alpha_{j}-1\right) \alpha_{j}^{\vee}+F_{2} e_{2}-F_{0} e_{0}+(t-1) F_{1} e_{1} \\
-(t+1) F_{3} e_{3}-t F_{4} e_{4}+e_{20}-(t-1) e_{21}+(t+1) e_{23}+t e_{24},
\end{gathered}
$$

where
$F_{0}=\lambda+t, \quad F_{1}=\lambda+\frac{t+1}{t-1}, \quad F_{2}=\mu, \quad F_{3}=\lambda-\frac{t-1}{t+1}, \quad F_{4}=\lambda-\frac{1}{t}$.
The operator $\widetilde{B}=\widetilde{B}_{1,1}$ is written in the form
$\widetilde{B}=\widetilde{u}_{2} K+\sum_{j=0,1,3,4} \tilde{u}_{j} \alpha_{j}^{\vee}+\widetilde{x} e_{2}-e_{0}+(\lambda+1) e_{1}-(\lambda-1) e_{3}-\lambda e_{4}-e_{21}+e_{23}+e_{24}$,
where \widetilde{u}_{2} is a polynomial in λ, μ and the other coefficients are given by

$$
\begin{gathered}
\Theta_{0} \tilde{u}_{j}=F_{0} F_{1} F_{2} F_{3} F_{4} F_{j}^{-1}-\sum_{i=0,1,3,4 ; i \neq j} \frac{1}{2}\left(\alpha_{i}+\alpha_{j}-2\right) F_{0} F_{1} F_{3} F_{4} F_{i}^{-1} F_{j}^{-1} \\
-\frac{1}{2}\left(\alpha_{j}-1\right) F_{0}\left(F_{0}-F_{1}-F_{3}-F_{4}\right) \quad(j=0,1,3,4), \\
\Theta_{0} \tilde{x}=F_{0} F_{2}\left(F_{0}-F_{1}-F_{3}-F_{4}\right)+\left(\alpha_{0}+\alpha_{2}-1\right) F_{0}+\left(\alpha_{1}+\alpha_{2}-1\right) F_{1} \\
+\left(\alpha_{3}+\alpha_{2}-1\right) F_{3}+\left(\alpha_{4}+\alpha_{2}-1\right) F_{4},
\end{gathered}
$$

with
$\Theta_{0}=\left(F_{0}-F_{1}\right)\left(F_{0}-F_{3}\right)\left(F_{0}-F_{4}\right), \quad \alpha_{2}=-\frac{1}{2}\left(\alpha_{0}+\alpha_{1}+\alpha_{3}+\alpha_{4}-1\right)$.

Since \widetilde{M} and \widetilde{B} are obtained from M and $B_{1,1}$ by the gauge transformation, they satisfy

$$
\left[d_{s}-\widetilde{M}, \frac{\mathrm{~d}}{\mathrm{~d} t}-\widetilde{B}\right]=0
$$

By rewriting this compatibility condition into differential equations for $F_{j}(j=0, \ldots, 4)$, we obtain the same system as (1.2), (1.3).

Theorem 5.2. Under the specialization $t_{1,1}=t$ and $t_{1,2}=1$, the system (5.1) is equivalent to the sixth Painlevé equation (1.2), (1.3).

Remark 5.3. The system (1.2), (1.3) can be regarded as the compatibility condition of the Lax pair

$$
\begin{equation*}
d_{s}(\Phi)=\widetilde{M} \Phi, \quad \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=\widetilde{B} \Phi \tag{5.4}
\end{equation*}
$$

where $\Phi=\exp \left(-\lambda f_{2}\right) W \exp (\xi)$. Let
$\Omega=\left\{(1-t)\left(F_{0}-F_{1}\right)\right\}^{-\alpha_{1}^{\vee}}\left\{(1+t)\left(F_{0}-F_{3}\right)\right\}^{-\alpha_{3}^{\vee}}\left\{t\left(F_{0}-F_{4}\right)\right\}^{-\alpha_{4}^{\vee}} F_{0}^{\alpha_{2}^{\vee}} \exp \left(F_{0}^{-1} e_{2}\right) \Phi$.
Then the system (5.4) is transformed into the Lax pair of the type of [NY3] by the gauge transformation $\Phi \rightarrow \Omega$.

Finally, we define the group of symmetries for P_{VI} following [NY2]. Consider the transformations

$$
r_{i}(X)=X \exp \left(-e_{i}\right) \exp \left(f_{i}\right) \exp \left(-e_{i}\right) \quad(i=0, \ldots, 4)
$$

where

$$
X=\exp (\xi) X(0)=W^{-1} Z, \quad \xi=\sum_{i=1,2} \sum_{k=1,3, \ldots} t_{k, i} \Lambda_{k, i}
$$

Under the similarity condition $\mathcal{M} \in \mathfrak{g}_{\geqslant 0}$, their action on W is given by
$r_{i}(W)=\exp \left(\lambda f_{2}\right) \exp \left(\frac{\left(\alpha_{i}^{\vee} \mid d_{s}-\tilde{M}\right)}{\left(f_{i} \mid d_{s}-\tilde{M}\right)} f_{i}\right) \exp \left(-\lambda f_{2}\right) W \quad(i=0,1,3,4)$,
$r_{2}(W)=W$.
We also define

$$
r_{i}\left(\alpha_{j}\right)=\alpha_{j}-\alpha_{i} a_{i j} \quad(i, j=0, \ldots, 4)
$$

Then the action of them on the variables λ, μ is described as

$$
r_{i}\left(F_{j}\right)=F_{j}-\frac{\alpha_{i}}{F_{i}} u_{i j} \quad(i, j=0, \ldots, 4),
$$

where $U=\left(u_{i j}\right)_{i, j=0}^{4}$ is the orientation matrix of the Dynkin diagram defined by

$$
U=\left\{\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
-1 & -1 & 0 & -1 & -1 . \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right\}
$$

Note that the transformations $r_{i}(i=0, \ldots, 4)$ satisfy the fundamental relations for the generators of the affine Weyl group $W\left(D_{4}^{(1)}\right)$.

Acknowledgment

The authors are grateful to Professors Masatoshi Noumi, Yasuhiko Yamada, Saburo Kakei and Tetsuya Kikuchi for valuable discussions and advices.

References

[AS] Ablowitz M J and Segur H 1977 Exact linearization of a Painlevé transcendent Phys. Rev. Lett. 38 1103-6
[C] Carter R 1972 Conjugacy classes in the Weyl group Compos. Math. 25 1-59
[DF] Delduc F and Fehér L 1995 Regular conjugacy classes in the Weyl group and integral hierarchies J. Phys. A: Math. Gen. 28 5843-82
[DS] Drinfel'd V G and Sokolov V V 1985 Lie algebras and equations of Korteweg-de Vries type J. Sov. Math. 30 1975-2036
[IKSY] Iwasaki K, Kimura H, Shimomura S and Yoshida M 1991 From Gauss to Painlevé-A Modern Theory of Special Functions (Aspects of Mathematics vol E16) (Germany: Vieweg)
[Kac] Kac V G 1990 Infinite Dimensional Lie Algebras (Cambridge: Cambridge University Press)
[Kaw] Kawamuko H 1996 Symmetrization of the sixth Painlevé equation Funkcial. Ekvac. 39 109-22
[KK1] Kakei S and Kikuchi T 2004 Affine Lie group approach to a derivative nonlinear Schrödinger equation and its similarity reduction Int. Math. Res. Not. 78 4181-209
[KK2] Kakei S and Kikuchi T 2005 The sixth Painlevé equation as similarity reduction of $\widehat{\mathfrak{g l}}_{3}$ hierarchy Preprint nlin-SI/0508021
[NY1] Noumi M and Yamada Y 1998 Higher order Painlevé equations of type $A_{l}^{(1)}$ Funkcial. Ekvac. 41 483-503
[NY2] Noumi M and Yamada Y 2001 Birational Weyl group action arising from a nilpotent Poisson algebra Physics and Combinatorics 1999, Proceedings of the Nagoya 1999 International Workshop ed A N Kirillov, A Tsuchiya and H Umemura (Singapore: World Scientific) pp 287-319
[NY3] Noumi M and Yamada Y 2002 A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{s o}(8)}$ Microlocal Analysis and Complex Fourier Analysis ed T Kawai and K Fujita (Singapore: World Scientific) pp 238-52
[O] Okamoto K 1987 Studies on the Painlevé equations, I Ann. Math. Pure Appl. 146 337-81

