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Abstract
The sixth Painlevé equation arises from a Drinfeld–Sokolov hierarchy of type
D

(1)
4 by similarity reduction.
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Mathematics Subject Classification: 34M55, 17B80, 37K10

1. Introduction

The Drinfeld–Sokolov hierarchies are extensions of the KdV (or mKdV) hierarchy [DS]. It
is known that their similarity reductions imply several Painlevé equations [AS, KK1, NY1].
For the sixth Painlevé equation (PVI), the relation with the A

(1)
2 -type hierarchy is investigated

[KK2]. On the other hand, PVI admits a group of symmetries which is isomorphic to the affine
Weyl group of type D

(1)
4 [O]. Also it is known that PVI is derived from the Lax pair associated

with the algebra ŝo(8) [NY3]. However, the relation between D
(1)
4 -type hierarchies and PVI

has not been clarified. In this paper, we show that the sixth Painlevé equation is derived from
a Drinfeld–Sokolov hierarchy of type D

(1)
4 by similarity reduction.

Consider a Fuchsian differential equation on P
1(C)

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0, (1.1)

with the Riemann scheme
x = t0 x = t1 x = t3 x = t4 x = λ x = ∞

0 0 0 0 0 ρ

θ0 θ1 θ3 θ4 2 ρ + 1

 ,

satisfying the relation

θ0 + θ1 + θ3 + θ4 + 2ρ = 1.

We also let µ = Resx=λp2(x) dx. Then the monodromy preserving deformation of the
equation (1.1) is described as a system of partial differential equations for λ and µ. This
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system can be regarded as the symmetric representation of PVI [Kaw]. We discuss a derivation
of the symmetric representation in the case

t0 = −t t1 = − t + 1

t − 1
t3 = t − 1

t + 1
t4 = 1

t
θ0 = α0 θ1 = α1 − 1 θ3 = α3 − 1 θ4 = α4 − 1 ρ = α2.

Note that

α0 + α1 + 2α2 + α3 + α4 = 4.

With the notation

F0 = λ + t, F1 = λ +
t + 1

t − 1
, F2 = µ, F3 = λ − t − 1

t + 1
, F4 = λ − 1

t
,

the dependence of λ and µ on t is given by

ϑ(Fj ) = 2F0F1F2F3F4 − (α0 − 1)F1F3F4

− (α1 − 1)F0F3F4 − (α3 − 1)F0F1F4 − (α4 − 1)F0F1F3 + �j, (1.2)

for j = 0, 1, 3, 4 and

ϑ(F2) = −F 2
2 (F0F1F3 + F0F1F4 + F0F3F4 + F1F3F4)

+ F2{(α3 + α4 − 2)F0F1 + (α1 + α4 − 2)F0F3 + (α1 + α3 − 2)F0F4

+ (α0 + α4 − 2)F1F3 + (α0 + α3 − 2)F1F4 + (α0 + α1 − 2)F3F4}
−α2{(α0 + α2 − 1)F0 + (α1 + α2 − 1)F1 + (α3 + α2 − 1)F3

+ (α4 + α2 − 1)F4}, (1.3)

where

ϑ = �0
d

dt
, �i =

∏
j=0,1,3,4;j �=i

(Fi − Fj ).

Note that the system (1.2), (1.3) is equivalent to the Hamiltonian system:

dλ

dt
= ∂H ′

∂µ
,

dµ

dt
= −∂H ′

∂λ
, (1.4)

where the Hamiltonian H ′ = H ′(λ, µ, t) is given by

�0H
′ = F0F1F

2
2 F3F4 − (α0 − 1)F1F2F3F4 − (α1 − 1)F0F2F3F4

− (α3 − 1)F0F1F2F4 − (α4 − 1)F0F1F2F3 + α2F0{(α0 − 1)F0

+ (α1 + α2 − 1)F1 + (α3 + α2 − 1)F3 + (α4 + α2 − 1)F4}.
We also remark that the system (1.4) is transformed into the Hamiltonian system for PVI as
in [IKSY]

dq

ds
= ∂H

∂p
,

dp

ds
= −∂H

∂q
,

with the Hamiltonian

s(s − 1)H = q(q − 1)(q − s)p2 − 1
4 {(α1 − 4)q(q − 1)

+ α3q(q − s) + α4(q − 1)(q − s)}p + 1
16 α2(α0 + α2)q,

by the canonical transformation (λ, µ, t,H ′) → (q, p, s,H) defined as

q =
(
t + t−1

t+1

)
F4(

t−1
t+1 − 1

t

)
F0

, p =
(

t−1
t+1 − 1

t

)
F0(F0F2 + α2)

4
(
t + t−1

t+1

)(
t + 1

t

) ,
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and

s = −
(
t + t−1

t+1

)(
t+1
t−1 + 1

t

)(
t − t+1

t−1

)(
t−1
t+1 − 1

t

) .

This paper is organized as follows. In section 2, we recall the definition of the affine Lie
algebra g = g(D

(1)
4 ). In section 3, a Drinfeld–Sokolov hierarchy of type D

(1)
4 is formulated.

In sections 4 and 5, we show that its similarity reduction implies the symmetric representation
of PVI.

2. Affine Lie algebra

In the notation of [Kac], the affine Lie algebra g = g
(
D

(1)
4

)
is the Lie algebra generated by the

Chevalley generators ei, fi, α
∨
i (i = 0, . . . , 4) and the scaling element d with the fundamental

relations

(ad ei)
1−aij (ej ) = 0, (adfi)

1−aij (fj ) = 0 (i �= j),[
α∨

i , α∨
j

] = 0,
[
α∨

i , ej

] = aij ej ,
[
α∨

i , fj

] = −aijfj , [ei, fj ] = δi,jα
∨
i ,[

d, α∨
i

] = 0, [d, ei] = δi,0e0, [d, fi] = −δi,0f0,

for i, j = 0, . . . , 4, where A = (aij )
4
i,j=0 is the generalized Cartan matrix of type D

(1)
4 defined

by

A =


2 0 −1 0 0
0 2 −1 0 0

−1 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

 .

We denote the Cartan subalgebra of g by

h =
4⊕

j=0

Cα∨
j ⊕ Cd.

The canonical central element of g is given by

K = α∨
0 + α∨

1 + 2α∨
2 + α∨

3 + α∨
4 .

The normalized invariant form (|) : g × g → C is determined by the conditions(
α∨

i |α∨
j

) = aij , (ei |fj ) = δi,j ,
(
α∨

i |ej

) = (
α∨

i |fj

) = 0,

(d|d) = 0,
(
d|α∨

j

) = δ0,j , (d|ej ) = (d|fj ) = 0,

for i, j = 0, . . . , 4.
We consider the Z-gradation g = ⊕

k∈Z
gk(s) of type s = (1, 1, 0, 1, 1) by setting

deg h = deg e2 = deg f2 = 0, deg ei = 1, deg fi = −1 (i = 0, 1, 3, 4).

If we take an element ds ∈ h such that(
ds |α∨

2

) = 0,
(
ds |α∨

j

) = 1 (j = 0, 1, 3, 4),

this gradation is defined by

gk(s) = {x ∈ g | [ds, x] = kx} (k ∈ Z).

In the following, we choose

ds = 4d + 2α∨
1 + 3α∨

2 + 2α∨
3 + 2α∨

4 .
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We set

g<0 =
⊕
k<0

gk(s), g�0 =
⊕
k�0

gk(s).

We choose the graded Heisenberg subalgebra s = ⊕
k∈Z

sk(s) of g of type s =
(1, 1, 0, 1, 1) with

s1(s) = C	1,1 ⊕ C	1,2,

where

	1,1 = −e0 + e1 + e3 − e21 + e23 + e24, 	1,2 = e1 − e3 + e4 + e20 + e21 + e23.

Here we denote

e2j = [e2, ej ], f2j = [f2, fj ] (j = 0, 1, 3, 4).

We remark that

s = {x ∈ g | [	1,1, x] ∈ CK}.
and

s0(s) = CK, s2k(s) = 0 (k �= 0).

Each s2k−1(s) is expressed in the form

s2k−1(s) = C	2k−1,1 ⊕ C	2k−1,2,

with certain elements 	2k−1,i (i = 1, 2) satisfying

[	2k−1,i , 	2l−1,j ] = (2k − 1)δi,j δk+l,1K (i, j = 1, 2; k, l ∈ Z).

For k = 0, we have

	−1,1 = 1
2 (−2f0 + f1 + f3 + f21 − f23 − 2f24),

	−1,2 = 1
2 (f1 − f3 + 2f4 − 2f20 − f21 − f23).

Remark 2.1. In the notation of [C], the Heisenberg subalgebra s corresponds to the conjugacy
class D4(a1) of the Weyl group W(D4); see [DF].

3. Drinfeld–Sokolov hierarchy

In the following, we use the notation of infinite-dimensional groups

G<0 = exp(̂g<0), G�0 = exp(̂g�0),

where ĝ<0 and ĝ�0 are completions of g<0 and g�0, respectively.
Introducing the time variables tk,i (i = 1, 2; k = 1, 3, 5, . . .), we consider the Sato

equation for a G<0-valued function W = W(t1,1, t1,2, . . .)

∂k,i(W) = Bk,iW − W	k,i (i = 1, 2; k = 1, 3, 5, . . .), (3.1)

where ∂k,i = ∂/∂tk,i and Bk,i stands for the g�0-component of W	k,iW
−1 ∈ ĝ<0 ⊕ g�0. We

understand the Sato equation (3.1) as a conventional form of the differential equation

∂k,i − Bk,i = W(∂k,i − 	k,i)W
−1 (i = 1, 2; k = 1, 3, 5, . . .), (3.2)

defined through the adjoint action of G<0 on ĝ<0 ⊕ g�0. The Zakharov–Shabat equation,

[∂k,i − Bk,i, ∂l,j − Bl,j ] = 0 (i, j = 1, 2; k, l = 1, 3, 5, . . .), (3.3)

follows from the Sato equation (3.2).
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The g�0-valued functions B1,i (i = 1, 2) are expressed in the form

B1,i = 	1,i + Ui, Ui =
4∑

j=0

uj,iα
∨
j + xie2 + yif2. (3.4)

The Zakharov–Shabat equation (3.3) for k = 1 is equivalent to

∂1,i (Uj ) − ∂1,j (Ui) + [Uj ,Ui] = 0, [	1,i , Uj ] − [	1,j , Ui] = 0, (3.5)

for i, j = 1, 2. Then we have

Lemma 3.1. Under the Sato equation (3.2), the following equations are satisfied:

(ds |∂1,i (Uj )) + 1
2 (Ui |Uj) = 0 (i, j = 1, 2). (3.6)

Proof. The system (3.2) for k = 1 is equivalent to

∂1,i − 	1,i − Ui = W(∂1,i − 	1,i )W
−1 (i = 1, 2). (3.7)

Set

W = exp(w), w =
∞∑

k=1

w−k, w−k ∈ g−k(s).

Then the system (3.7) implies

Ui =
∞∑

k=1

1

k!
ad(w)k−1∂1,i (w) +

∞∑
k=1

1

k!
ad(w)k(	1,i ) (i = 1, 2). (3.8)

Comparing the component of degree −k in (3.8), we obtain

Ui = ad(w−1)(	1,i ) (i = 1, 2),

for k = 0;

ad(w−2)(	1,i ) + 1
2 ad(w−1)

2(	1,i ) + ∂1,i (w−1) = 0 (i = 1, 2), (3.9)

for k = 1;∑
i1+···+il=k+1

1

l!
ad(w−i1) · · · ad(w−il )(	1,i )

+
∑

i1+···+il=k

1

l!
ad(w−i1) · · · ad(w−il−1)∂1,i (w−il ) = 0 (i = 1, 2),

for k � 2. On the other hand, we have

(	1,i | ad(	1,j )(x)) = 0 (i, j = 1, 2; x ∈ g−2(s)),

and

(	1,i |x) = (ds | ad(	1,i )(x)) (i = 1, 2; x ∈ g−1(s)).

Hence it follows that

(	1,j | LHS of (3.9)) = 1
2 (	1,j| ad(w−1)

2(	1,i)) + (	1,j|∂1,i(w−1))

= − 1
2 (Ui |Uj) − (ds |∂1,i (Uj )). �

Remark 3.2. Let X(0) ∈ G<0G�0 and define

X = X(t1,1, t1,2, . . .) = exp(ξ)X(0), ξ =
∑
i=1,2

∑
k=1,3,...

tk,i	k,i .

Then a solution W ∈ G<0 of the system (3.1) is given formally via the decomposition

X = W−1Z, Z ∈ G�0.
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4. Similarity reduction

Under the Sato equation (3.2), we consider the operator

M = W exp(ξ)ds exp(−ξ)W−1, ξ =
∑
i=1,2

∑
k=1,3,...

tk,i	k,i .

Then the operator M satisfies

∂k,i(M) = [Bk,i,M] (i = 1, 2; k = 1, 3, 5, . . .).

Note that

M = ds −
∑
i=1,2

∑
k=1,3,...

ktk,iW	k,iW
−1 − ds(W)W−1.

Assuming that tk,1 = tk,2 = 0 for k � 3, we require that the similarity condition M ∈ g�0

is satisfied. Then we have

∂1,i (M) = [B1,i ,M] (i = 1, 2).

where M = ds − t1,1B1,1 − t1,2B1,2, or equivalently

[ds − M, ∂1,i − B1,i] = 0 (i = 1, 2), (4.1)

where M = t1,1B1,1 + t1,2B1,2. Under the Zakharov–Shabat equation

[∂1,1 − B1,1, ∂1,2 − B1,2] = 0,

the system (4.1) is equivalent to∑
j=1,2

t1,j ∂1,j (B1,i ) = [ds, B1,i] − B1,i (i = 1, 2).

In terms of the operators Ui , this similarity condition can be expressed as∑
j=1,2

t1,j ∂1,j (Ui) + Ui = 0 (i = 1, 2). (4.2)

We regard the systems (3.5), (3.6) and (4.2) as a similarity reduction of the Drinfeld–Sokolov
hierarchy of type D

(1)
4 .

In the notation (3.4), these systems are expressed in terms of the variables uj,i , xi, yi as
follows:

∂1,1(x2) − ∂1,2(x1) − (u1,1 − u3,1 − u0,2 + u4,2)x1 + (u0,1 − u4,1 + u1,2 − u3,2)x2 = 0,

∂1,1(y2) − ∂1,2(y1) + (u1,1 − u3,1 − u0,2 + u4,2)y1 − (u0,1 − u4,1 + u1,2 − u3,2)y2 = 0,

∂1,1(u2,2) − ∂1,2(u2,1) − x1y2 + x2y1 = 0,

∂1,1(uj,2) − ∂1,2(uj,1) = 0 (j = 0, 1, 3, 4),

and
u1,1 − 2u2,1 + u3,1 + 2u4,1 − u1,2 + u3,2 = 0,

u1,1 − u3,1 − 2u0,2 − u1,2 + 2u2,2 − u3,2 = 0,

u1,1 − u3,1 + u1,2 + u3,2 − 2u4,2 + 2x1 = 0,

2u0,1 − u1,1 − u3,1 − u1,2 + u3,2 + 2x2 = 0,

u1,1 − u3,1 + 2u0,2 − u1,2 − u3,2 + 2y1 = 0,

u1,1 + u3,1 − 2u4,1 − u1,2 + u3,2 + 2y2 = 0,

(4.3)

for the system (3.5);∑
l=0,1,3,4

4∂1,i (ul,j ) +
∑

l=0,1,3,4

(2ul,i − u2,i )(2ul,j − u2,j ) + 2(xiyj + yixj ) = 0 (i, j = 1, 2),
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for the system (3.6);

t1,1∂1,1(xi) + t1,2∂1,2(xi) + xi = 0, t1,1∂1,1(yi) + t1,2∂1,2(yi) + yi = 0,

t1,1∂1,1(uj,i) + t1,2∂1,2(uj,i) + uj,i = 0, (i = 1, 2; j = 0, . . . , 4),

for the system (4.2). In the next section, we show that they imply the sixth Painlevé equation.
Under the similarity condition (4.2), the system (3.6) implies

2(ds |Ui) − t1,1(Ui |U1) − t1,2(Ui |U2) = 0 (i = 1, 2).

It is expressed in terms of the variables uj,i , xi, yi as follows:∑
l=0,1,3,4

4ul,i −
∑

l=0,1,3,4

t1,1(2ul,i − u2,i )(2ul,1 − u2,1) − 2t1,1(xiy1 + yix1)

−
∑

l=0,1,3,4

t1,2(2ul,i − u2,i )(2ul,2 − u2,2) − 2t1,2(xiy2 + yix2) = 0 (i = 1, 2).

(4.4)

Remark 4.1. The systems (3.5) and (4.2) can be regarded as the compatibility condition of
the Lax form

ds(�) = M�, ∂1,i (�) = B1,i� (i = 1, 2), (4.5)

where � = W exp(ξ).

5. The sixth Painlevé equation

In the previous section, we have derived the system of the equations

∂1,i (Uj ) − ∂1,j (Ui) + [Uj ,Ui] = 0, [	1,i , Uj ] − [	1,j , Ui] = 0,

(ds |∂1,i (Uj )) − 1
2 (Ui |Uj) = 0,

∑
l=1,2

t1,l∂1,l(Ui) + Ui = 0 (i, j = 1, 2), (5.1)

for the g0-valued functions Ui = Ui(t1,1, t1,2) (i = 1, 2), as a similarity reduction of the
D

(1)
4 hierarchy of type s = (1, 1, 0, 1, 1). In terms of the operators B1,i = 	1,i + Ui and

M = t1,1B1,1 + t1,2B1,2, the system (5.1) is expressed as

[∂1,1 − B1,1, ∂1,2 − B1,2] = 0, [ds − M, ∂1,i − B1,i] = 0 (i = 1, 2),

with the equations for normalization (3.6). In this section, we show that the sixth Painlevé
equation is derived from them.

The operator M is expressed in the form

M =
∑
i=1,2

t1,i	1,i +
∑

j=0,1,3,4

κj α∨
j + η α∨

2 + ϕe2 + ψf2,

so that

κj = t1,1uj,1 + t1,2uj,2 (j = 0, 1, 3, 4), η = t1,1u2,1 + t1,2u2,2,

ϕ = t1,1x1 + t1,2x2, ψ = t1,1y1 + t1,2y2. (5.2)

The system (4.1) implies that the variables κj (j = 0, 1, 3, 4) are independent of t1,i (i = 1, 2).
Then the following lemma is obtained from (4.3), (4.4) and (5.2).

Lemma 5.1. The variables uj,i , xi, yi (i = 1, 2; j = 0, . . . , 4) are determined uniquely as
polynomials in η, ϕ and ψ with coefficients in C(t1,i )[κj ]. Furthermore, the following relation
is satisfied:

η2 − (κ0 + κ1 + κ3 + κ4)(η + 1) + κ2
0 + κ2

1 + κ2
3 + κ2

4 + ϕψ = 0.
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Thanks to this lemma, the system (5.1) can be rewritten into a system of first-order differential
equations for η and ϕ; we do not give the explicit formulae here.

We denote by n+ the subalgebra of g generated by ej (j = 0, . . . , 4), and by b+ the borel
subalgebra of g defined by b+ = h ⊕ n+. We look for a dependent variable λ such that

M̃ = exp(−λf2)M exp(λf2) − exp(−λf2)ds(exp(λf2)) ∈ b+,

B̃1,i = exp(−λf2)B1,i exp(λf2) − exp(−λf2)∂1,i (exp(λf2)) ∈ b+ (i = 1, 2),

namely

ϕλ2 + (2η − κ0 − κ1 − κ3 − κ4)λ − ψ = 0,

∂1,i (λ) + xiλ
2 − (u0,i + u1,i − 2u2,i + u3,i + u4,i )λ − yi = 0 (i = 1, 2). (5.3)

Note that the definition of M̃ and B̃1,i arises from the gauge transformation � → � defined
by � = exp(−λf2)� on the Lax form (4.5). By Lemma 5.1 together with the system (5.1),
we can show that

λ = − 1

8ϕ

(
8η − α2

0 − α2
1 − α2

3 − α2
4 + 4

)
,

satisfies equation (5.3), where αj (j = 0, 1, 3, 4) are constants defined by

κj = − 1
16

(
8αj − α2

0 − α2
1 − α2

3 − α2
4 − 4

)
.

We also let µ by a dependent variable defined by µ = ϕ so that

η = −λµ + 1
8

(
α2

0 + α2
1 + α2

3 + α2
4 − 4

)
, ϕ = µ.

Then the system (5.1) can be regarded as a system of differential equations for variables λ and
µ with parameters αj (j = 0, 1, 3, 4).

We now regard the system (5.1) as a system of ordinary differential equations with respect
to the independent variable t = t1,1 by setting t1,2 = 1. Then the operator M̃ is written in the
form

M̃ = 1
16

(
α2

0 + α2
1 + α2

3 + α2
4 − 4

)
K −

∑
j=0,1,3,4

1

2
(αj − 1)α∨

j + F2e2 − F0e0 + (t − 1)F1e1

− (t + 1)F3e3 − tF4e4 + e20 − (t − 1)e21 + (t + 1)e23 + te24,

where

F0 = λ + t, F1 = λ +
t + 1

t − 1
, F2 = µ, F3 = λ − t − 1

t + 1
, F4 = λ − 1

t
.

The operator B̃ = B̃1,1 is written in the form

B̃ = ũ2K +
∑

j=0,1,3,4

ũjα
∨
j + x̃e2 − e0 + (λ + 1)e1 − (λ − 1)e3 − λe4 − e21 + e23 + e24,

where ũ2 is a polynomial in λ, µ and the other coefficients are given by

�0ũj = F0F1F2F3F4F
−1
j −

∑
i=0,1,3,4;i �=j

1

2
(αi + αj − 2)F0F1F3F4F

−1
i F−1

j

− 1

2
(αj − 1)F0(F0 − F1 − F3 − F4) (j = 0, 1, 3, 4),

�0x̃ = F0F2(F0 − F1 − F3 − F4) + (α0 + α2 − 1)F0 + (α1 + α2 − 1)F1

+ (α3 + α2 − 1)F3 + (α4 + α2 − 1)F4,

with

�0 = (F0 − F1)(F0 − F3)(F0 − F4), α2 = − 1
2 (α0 + α1 + α3 + α4 − 1).
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Since M̃ and B̃ are obtained from M and B1,1 by the gauge transformation, they satisfy[
ds − M̃,

d

dt
− B̃

]
= 0.

By rewriting this compatibility condition into differential equations for Fj (j = 0, . . . , 4), we
obtain the same system as (1.2), (1.3).

Theorem 5.2. Under the specialization t1,1 = t and t1,2 = 1, the system (5.1) is equivalent to
the sixth Painlevé equation (1.2), (1.3).

Remark 5.3. The system (1.2), (1.3) can be regarded as the compatibility condition of the
Lax pair

ds(�) = M̃�,
d�

dt
= B̃�, (5.4)

where � = exp(−λf2)W exp(ξ). Let

� = {(1 − t)(F0 − F1)}−α∨
1 {(1 + t)(F0 − F3)}−α∨

3 {t (F0 − F4)}−α∨
4 F

α∨
2

0 exp(F−1
0 e2)�.

Then the system (5.4) is transformed into the Lax pair of the type of [NY3] by the gauge
transformation � → �.

Finally, we define the group of symmetries for PVI following [NY2]. Consider the
transformations

ri(X) = X exp(−ei) exp(fi) exp(−ei) (i = 0, . . . , 4),

where

X = exp(ξ)X(0) = W−1Z, ξ =
∑
i=1,2

∑
k=1,3,...

tk,i	k,i .

Under the similarity condition M ∈ g�0, their action on W is given by

ri(W) = exp(λf2) exp

((
α∨

i |ds − M̃
)

(fi |ds − M̃)
fi

)
exp(−λf2)W (i = 0, 1, 3, 4),

r2(W) = W.

We also define

ri(αj ) = αj − αiaij (i, j = 0, . . . , 4).

Then the action of them on the variables λ, µ is described as

ri(Fj ) = Fj − αi

Fi

uij (i, j = 0, . . . , 4),

where U = (uij )
4
i,j=0 is the orientation matrix of the Dynkin diagram defined by

U =


0 0 1 0 0
0 0 1 0 0

−1 −1 0 −1 −1
0 0 1 0 0
0 0 1 0 0

.


Note that the transformations ri (i = 0, . . . , 4) satisfy the fundamental relations for the
generators of the affine Weyl group W

(
D

(1)
4

)
.
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